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Background

= Technology
— Voltage scaling slower than technology
— Power density doubling every generation

— 30% transistor capacitance reduction each generation
— Implies reduction in power only with iso-transistor count

— Miniaturization calling for reduction in heat dissipation
— Traditional cooling solutions reaching physical limits -
= Economy
— Electronic device presence multiplying
— Energy consumption increasing
— Energy costs rising
= Sociology and environment
— Global warming awareness

http://www.phys.ncku.edu.tw/~htsu/humor/fry_egg.html

Background

= Move to multi-core
— Good for power and power density reduction, but not enough...
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= Definition
— Power consumed = dynamic power + leakage power

P= (Pswitch. + Ps.c. + Pcont. + I:'glitch) + Pleak.
P= (a.C.VCCZ.F + Ps.c. + Pcont. + Pglitch) + Vcc'lleak.
a: activity factor leak - leakage current ~ exp(-qVt/kT)
C: switching capacitance  Vt: threshold voltage
V. power supply voltage T temperature
F: clock frequency

J. Rattner, Keynote, DesignCon2006




Dynamic Power Reduction

Pgyn. = 0L.C.VF

= Power mitigation opportunities

— Switching activity reduction — Switching capacitance reduction

Conditional execution, pre-charge — Optimize circuit design

Conditional clocking — Balance power-delay trade-off: move closer
to optimal power-performance design point

— Shift to static versus dynamic logic

— Minimize diffusion, wire and gate loading
particularly in high o areas (domino, clocks)

Reduce bus power

— Force clock-gating awareness in rtl & design
— Improve skew management methodology
— Evaluate clock enable logic benefits

— Turn-off inactive blocks
— Reduce toggling of high C nodes & busses . . o
— Implement transition encoding to minimize

- V0|tage/teChnO|ogy Scalmg toggles a low-voltage differential on-chip
— Dynamic voltage scaling buses
— Low threshold transistors — Reduce driver capacitance with appropriate
_ Multiple voltages repeater insertion
— Operate as low as possible within reliability limits — Optimize layout design
_ . — Use efficient layout techniques (shielding,
Clock frgquency redu§t|on . spacing)
— Multiple Forgs, multi-threads / parallelism Lower clock loading
— Reduce pipeline stages

— Reduce local clock interconnect routing
— Use double-edged sequential elements — Group /cluster sequential elements

Dynamic Power Reduction

den.= Ps.c. I:’cont. Pglitch
= Power mitigation opportunities

— Short circuit power — Glitch power
— Power dissipated if both the PMOS and — Caused by unequal propagation delays of

NMOS transistors are in an on state
— Function of (V- 2V,)?
— Linearly increases with input signal slope
— Highly sensitive to in/out slope ratio

— Avoid large slope-in to slope-out ratios

— Avoid power races and contention (force
state, apply appropriate reset/enable/mut-
ex conditions)

— Continuous power

— Power burnt due to tail end of signal which
doesn’t go to full rail for a long time

— Design optimal transistor sizing

— Resize overloaded paths without under-
driving them

input signals to gate

— Glitches multiply as they propagate
through a combinational logic

— Size gates to avoid delays/races

— Prohibit multiple bit transitions (00>11)

— Increase noise robustness / decrease
coupling

— Decrease sequential “vulnerability
window” (when logic propagates) using
edge triggered sequential elements versus
transparent latches

— Trade-off required vs. active power

H.J.M. Veendrick, “Short Dissipation of Static CMOS Circuitry and its Impact on the Design of Buffer Circuits”, IEEE JSSC1984




Leakage Power Reduction

PIeak. =V

cc'lleak.

= Sources of leakage

— Sub-threshold leakage (SD leakage)
— Increasing with process technology, voltage,
and temperature
— Gate-oxide leakage (direct tunneling)
— Increasing with process technology, voltage, Jy
and temperature
— Gate oxide thickness nearing limit
— If T, scaling slows down, then V, scaling will
have to slow down
— Temporary relief with high k dielectric
— Other sources of leakage include
— Junction reverse-bias leakage
— Gate induced drain leakage

§'7_ Voo

Leakage Power Reduction

I:'Ieak. =V

cc'lleak.

= Reduction Techniques

— Transistor level

— Multiple transistor flavors for mutli-performance usages
— High Vt / Long Lg (Low leakage device)
— Nom Vit / Nom Lg (Nominal leakage device)
— Low Vt / Short Lg (High leakage device)
— IBM’s power processors leveraging triple Vt process option
— % high Vt device increased from 26.2% in Power4 to 33.9% in Power5

— Block level
— Stack forcing _":I -

Stack Effect Sleep Transistor

— Force one transistor into two-transistor stack with same input load —q
— Trade-off between leakage and speed: can be applied to gates with timing slack Equal \
— Leakage reduced considerably when two or more transistors are off in a stack input

— Sleep transistors for cell-based design load J
— Insert sleep transistors to create virtual Vdd and Vss nodes ~|::
— Common in cache design
— Switching sleep transistors can cost energy

_|

5-10X reduction ~ 2-1000X reduction

8 J. Clabes et al., “Design and implementation of the POWERS5 microprocessor”, ISSCC2004 — J. Rattner, Keynote, DesignCon2006




Leakage Power Reduction

PIeak. =V

cc'lleak.

= Reduction Techniques

— Die level
— Power switches
— Ondie
— On/off voltage

— Multiple Vcc domains
— Located off-die i.e on the board
— Discrete voltages
— Body bias
— Sun’s dual-core SPARC processor uses body bias to reduce leakage at burn-in
— Effect stronger in long channel devices (Vt controlled by body bias), diminishing with short channel devices

— Platform level
— Lower junction temperature located off-die (on the board)
— Drive junction temperature down for platforms to reduce leakage current

J.M. Hart et al., “Implementation of a fourth-generation 1.8-GHz dual-core SPARC V9 microprocessor”, JSSC2005
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Applications

= [tanium™
— High-performance mission-critical computing Intel® Architecture processor
— Quad-Core Itanium® processor with multi-threading (8T)
— World’s first 2 billion transistor microprocessor
— Increased performance vs. Dual-Core Itanium® Processor 9100 serles
— 2x performance at 25% more power T i

— Energy efficiency

— High-level of system integration
— Multi-core, QuickPath interconnects, integrated memory
controllers, advanced RAS, large 30+MB cache, etc.

— Voltage and frequency management for optimal use of
power and thermal envelope
— Multiple power supplies

B. Stackhouse, “A 65nm 2-Billion-Transistor Quad-Core Itanium® Processor”, ISSCC 2008




Applications

= Atom™
— Low-power Intel® Architecture processor: fully Core 2 Duo ISA compatible
— Average power consumption target in the order of a few hundred mW
— Performance similar to mainstream Ultra-Mobile PCs
— 47M transistors in a die size under 25mm? manufactured in 45nm CMOS
— Thermal Design Power (TDP) consumption 2W @ 2GHz
— 10x lower power than ULV Dothan
— Low leakage transistors
— Deep power down (C6) architecture
— Optimized register-file and cache 6T bit cells

— CMOS mode on quad-pumped FSB IO

— Split 10 power supply intel)

Atomy

1 G. Gerosa etal., “A Sub-1W to 2W Low-Power IA Processor for Mobile Internet Devices in 45nm High-K Metal-Gate CMOS”,

Conclusion

= Power mitigation opportunities
— Various power reduction techniques

— Involvement of many different domains
— Process, architecture, clocks, library, power management, design specification and
methodology, ...

— Tailored solution required to meet actual needs and trade-offs
— Not all solutions are good in all cases

= But that’s not enough...
— Adequate power modeling is also required!

Acknowledgments: Mondira Pant, Bill Bowhill, Jeff Pickholtz, Rajay Pai
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Leap ahead”




