

Power Mitigation Techniques in Complex MPSoCs

Olivier Franza

MPSoC'08

1 Copyright © Intel Corporation, 2008. All rights reserved. 3rd party marks and brands are the property of their respective owners. All products, dates, and figures are subject to change without notice.

Agenda

- Background
- Dynamic Power
- Leakage Power
- Applications
- Conclusion

Background

- Technology
 - Voltage scaling slower than technology
 - Power density doubling every generation
 - 30% transistor capacitance reduction each generation
 - Implies reduction in power only with iso-transistor count
 - Miniaturization calling for reduction in heat dissipation
 - Traditional cooling solutions reaching physical limits
- Economy
 - Electronic device presence multiplying
 - Energy consumption increasing
 - Energy costs rising
- Sociology and environment
 - Global warming awareness

http://www.phys.ncku.edu.tw/~htsu/humor/fry_egg.html

Background

- Move to multi-core
 - Good for power and power density reduction, but not enough...

- Definition
 - Power consumed = dynamic power + leakage power

Dynamic Power Reduction

Power mitigation opportunities

- Switching activity reduction
 - Conditional execution, pre-charge
 - Conditional clocking
 - Force clock-gating awareness in rtl & design
 - Improve skew management methodology
 - Evaluate clock enable logic benefits
 - Turn-off inactive blocks
 - Reduce toggling of high C nodes & busses
- Voltage/technology scaling
 - Dynamic voltage scaling
 - Low threshold transistors
 - Multiple voltages
 - Operate as low as possible within reliability limits
- Clock frequency reduction
 - Multiple cores, multi-threads / parallelism
 - Reduce pipeline stages
 - Use double-edged sequential elements

$P_{dyn.} = \alpha.C.V^2.F + P_{s.c.} + P_{cont.} + P_{glitch}$

Switching capacitance reduction

- Optimize circuit design
 - Balance power-delay trade-off: move closer to optimal power-performance design point
 - Shift to static versus dynamic logic
 - Minimize diffusion, wire and gate loading particularly in high α areas (domino, clocks)
- Reduce bus power
 - Implement transition encoding to minimize toggles a low-voltage differential on-chip buses
 - Reduce driver capacitance with appropriate repeater insertion
- Optimize layout design
 - Use efficient layout techniques (shielding, spacing)
- Lower clock loading
 - Reduce local clock interconnect routing
 - Group /cluster sequential elements

Dynamic Power Reduction

Power mitigation opportunities

- Short circuit power
 - Power dissipated if both the PMOS and NMOS transistors are in an on state
 - Function of $(V_{cc} 2V_t)^3$
 - Linearly increases with input signal slope
 - Highly sensitive to in/out slope ratio
 - Avoid large slope-in to slope-out ratios
 - Avoid power races and contention (force state, apply appropriate reset/enable/mutex conditions)
- Continuous power
 - Power burnt due to tail end of signal which doesn't go to full rail for a long time
 - Design optimal transistor sizing
 - Resize overloaded paths without underdriving them

$$P_{dyn.} = \alpha.C.V^2.F + P_{s.c.} + P_{cont.} + P_{glitch}$$

- Glitch power
 - Caused by unequal propagation delays of input signals to gate
 - Glitches multiply as they propagate through a combinational logic
 - Size gates to avoid delays/races
 - Prohibit multiple bit transitions (00→11)
 - Increase noise robustness / decrease coupling
 - Decrease sequential "vulnerability window" (when logic propagates) using edge triggered sequential elements versus transparent latches
 - Trade-off required vs. active power

5

Leakage Power Reduction

 $P_{leak.} = V_{cc} I_{leak.}$

- Sources of leakage
 - Sub-threshold leakage (SD leakage)
 - Increasing with process technology, voltage, and temperature
 - Gate-oxide leakage (direct tunneling)
 - Increasing with process technology, voltage, and temperature
 - Gate oxide thickness nearing limit
 - $-\ \ If \ T_{ox}$ scaling slows down, then V_{dd} scaling will have to slow down
 - Temporary relief with high k dielectric
 - Other sources of leakage include
 - Junction reverse-bias leakage
 - Gate induced drain leakage

_

Leakage Power Reduction

 $P_{leak.} = V_{cc} I_{leak.}$

- Reduction Techniques
 - Transistor level
 - Multiple transistor flavors for mutli-performance usages
 - High Vt / Long Lg (Low leakage device)
 - Nom Vt / Nom Lg (Nominal leakage device)
 - Low Vt / Short Lg (High leakage device)
 - IBM's power processors leveraging triple Vt process option
 - % high Vt device increased from 26.2% in Power4 to 33.9% in Power5
 - Block level
 - Stack forcing
 - Force one transistor into two-transistor stack with same input load
 - Trade-off between leakage and speed: can be applied to gates with timing slack
 - Leakage reduced considerably when two or more transistors are off in a stack
 - Sleep transistors for cell-based design
 - Insert sleep transistors to create virtual Vdd and Vss nodes
 - Common in cache design
 - Switching sleep transistors can cost energy

J. Clabes et al., "Design and implementation of the POWER5 microprocessor", ISSCC2004 – J. Rattner, Keynote, DesignCon2006

Leakage Power Reduction

 $P_{leak.} = V_{cc} I_{leak.}$

- Reduction Techniques
 - Die level
 - Power switches
 - On die
 - On/off voltage
 - Multiple Vcc domains
 - Located off-die i.e on the board
 - Discrete voltages
 - Body bias
 - Sun's dual-core SPARC processor uses body bias to reduce leakage at burn-in
 - Effect stronger in long channel devices (Vt controlled by body bias), diminishing with short channel devices
 - Platform level
 - Lower junction temperature located off-die (on the board)
 - Drive junction temperature down for platforms to reduce leakage current

J.M. Hart et al., "Implementation of a fourth-generation 1.8-GHz dual-core SPARC V9 microprocessor", JSSC2005

Applications

- Itanium[™]
 - High-performance mission-critical computing Intel[®] Architecture processor
 - Quad-Core Itanium® processor with multi-threading (8T)
 - World's first 2 billion transistor microprocessor
 - Increased performance vs. Dual-Core Itanium® Processor 9100 series
 - 2x performance at 25% more power
 - Energy efficiency
 - High-level of system integration
 - Multi-core, QuickPath interconnects, integrated memory controllers, advanced RAS, large 30+MB cache, etc.
 - Voltage and frequency management for optimal use of power and thermal envelope
 - Multiple power supplies

Applications

- Atom[™]
 - Low-power Intel[®] Architecture processor: fully Core 2 Duo ISA compatible
 - Average power consumption target in the order of a few hundred mW
 - Performance similar to mainstream Ultra-Mobile PCs
 - 47M transistors in a die size under 25mm² manufactured in 45nm CMOS
 - Thermal Design Power (TDP) consumption 2W @ 2GHz
 - 10x lower power than ULV Dothan
 - Low leakage transistors
 - Deep power down (C6) architecture
 - Optimized register-file and cache 6T bit cells
 - CMOS mode on quad-pumped FSB IO
 - Split IO power supply

G. Gerosa et al., "A Sub-1W to 2W Low-Power IA Processor for Mobile Internet Devices in 45nm High-K Metal-Gate CMOS",

Conclusion

- Power mitigation opportunities
 - Various power reduction techniques
 - Involvement of many different domains
 - Process, architecture, clocks, library, power management, design specification and methodology, ...
 - Tailored solution required to meet actual needs and trade-offs
 - Not all solutions are good in all cases
- But that's not enough...
 - Adequate power modeling is also required!

